首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   1篇
安全科学   5篇
废物处理   2篇
环保管理   19篇
综合类   33篇
基础理论   27篇
污染及防治   18篇
评价与监测   2篇
社会与环境   3篇
灾害及防治   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2014年   4篇
  2013年   8篇
  2012年   9篇
  2011年   9篇
  2010年   3篇
  2009年   5篇
  2008年   7篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1985年   5篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1956年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
71.
Contact pheromones mediate mate recognition and play important roles in mating systems of longhorned beetles (Coleoptera: Cerambycidae). One common bioassay of contact chemoreception in cerambycids involves presenting a freeze-killed female to a male in a Petri dish arena. If the male attempts to mate with the female carcass, it confirms that mate recognition signals are present and intact and behavior is not involved. Cuticular hydrocarbons are then stripped from the female with successive solvent washes, rendering her unattractive to males and also resulting in a crude extract containing the cuticular hydrocarbons. To test the bioactivity of the crude extract, the same female is then treated with the extract and presented again to the male. Males of some species, including Megacyllene robiniae (F?rster), respond less readily to reconstituted females than to those same beetles before they were solvent-extracted. In the present study, we test the hypothesis that the contact pheromone of M. robiniae, Z9:C25, exists as a layer on the surface of the epicuticle. We used solid phase microextraction (SPME) to sample cuticular hydrocarbons of female beetles after they were freeze-killed, solvent washed, and treated with crude cuticular extracts. We found that extracting cuticular hydrocarbons from females and applying the resulting crude extract back onto the solvent-washed cadaver scrambles the wax layer and decreases the abundance of the contact pheromone presented on the surface of the insect.  相似文献   
72.
Resource planning and management in British Columbia, Canada, has been steadily moving towards more active public participation. While government agencies have long been required to consult the general public during the course of land or resource use planning, the 1990s brought in a period of more intense public involvement. In terms of resource planning, this led to the creation of several new planning processes. Given that there is now considerable experience with the Commission on Resources and Environment (CORE) and the Land and Resource Management Plan (LRMP) processes, it is time for an appraisal. In particular, the paper examines the public's perceptions of these processes with respect to 'what works well' and 'what needs improvement'. The results highlight a number of areas to which process designers and managers should direct attention. There are three key items of note. First, there are generally low levels of awareness by respondents of public consultation processes in their community. Second, there is a need for access to timely, relevant and readable information throughout the course of the process in order to keep participants and the public as up-to-date as possible. Finally, there must be greater clarity about the process itself, including mandates, participants and decision-making powers.  相似文献   
73.
This article presents a case study of the source‐area treatment of tetrachloroethene (PCE) in a low‐permeability formation using zero‐valent iron (ZVI). Evidence of the stimulation of biological reduction processes within the treatment zone occurred. Pneumatic fracturing and injection of microscale ZVI slurry in the overburden and weathered bedrock zones was performed at a commercial brownfields redevelopment site in Maryland. A 20,000‐square‐foot source area impacted with PCE at concentrations greater than 15,000 µg/L was treated at depths ranging from 10 to 70 feet bgs. An average ZVI dosage of 0.0024 iron‐to‐soil mass ratio within the overburden zone led to a 75 percent decrease in PCE mass in less than one year. For the weathered bedrock zone, an average 0.0045 iron‐to‐soil mass ratio resulted in a 92 percent decrease in PCE mass during the same period. The reducing environment and hydrogen generated by the ZVI may have stimulated Dehalobacter populations, as evidenced by concentrations up to 104 cells per milliliter measured within the treatment area despite a groundwater pH as high as 9. The biological reductive dechlorination of the chlorinated ethenes explains the temporary increase in trichloroethene and cis‐1,2‐dichloroethene concentrations. © 2013 Wiley Periodicals, Inc.  相似文献   
74.
75.
76.
77.
78.
79.
National and international chemical management programs are assessing thousands of chemicals for their persistence, bioaccumulative and environmental toxic properties; however, data for evaluating the bioaccumulation potential for fish are limited. Computer based models that account for the uptake and elimination processes that contribute to bioaccumulation may help to meet the need for reliable estimates. One critical elimination process of chemicals is metabolic transformation. It has been suggested that in vitro metabolic transformation tests using fish liver hepatocytes or S9 fractions can provide rapid and cost-effective measurements of fish metabolic potential, which could be used to refine bioconcentration factor (BCF) computer model estimates. Therefore, recent activity has focused on developing in vitro methods to measure metabolic transformation in cellular and subcellular fish liver fractions. A method to extrapolate in vitro test data to the whole body metabolic transformation rates is presented that could be used to refine BCF computer model estimates. This extrapolation approach is based on concepts used to determine the fate and distribution of drugs within the human body which have successfully supported the development of new pharmaceuticals for years. In addition, this approach has already been applied in physiologically-based toxicokinetic models for fish. The validity of the in vitro to in vivo extrapolation is illustrated using the rate of loss of parent chemical measured in two independent in vitro test systems: (1) subcellular enzymatic test using the trout liver S9 fraction, and (2) primary hepatocytes isolated from the common carp. The test chemicals evaluated have high quality in vivo BCF values and a range of logK(ow) from 3.5 to 6.7. The results show very good agreement between the measured BCF and estimated BCF values when the extrapolated whole body metabolism rates are included, thus suggesting that in vitro biotransformation data could effectively be used to reduce in vivo BCF testing and refine BCF model estimates. However, additional fish physiological data for parameterization and validation for a wider range of chemicals are needed.  相似文献   
80.
Background, Aims and Scope Research and development has its own benefits and inconveniences. One of the inconveniences is the generation of enormous quantity of diverse toxic and hazardous wastes and its eventual contamination to soil and groundwater resources. Ethidium bromide (EtBr) is one of the commonly used substances in molecular biology experiments. It is highly mutagenic and moderately toxic substance used in DNA-staining during electrophoresis. Interest in phytoremediation as a method to solve chemical contamination has been growing rapidly in recent years. The technology has been utilized to clean up soil and groundwater from heavy metals and other toxic organic compounds in many countries like the United States, Russia, and most of European countries. Phytoremediation requires somewhat limited resources and very useful in treating wide variety of environmental contaminants. This study aimed to assess the potential of selected tropical plants as phytoremediators of EtBr. Materials and Methods This study used tomato (Solanum lycopersicum), mustard (Brassica alba), vetivergrass (Vetiveria zizanioedes), cogongrass (Imperata cylindrica), carabaograss (Paspalum conjugatum), and talahib (Saccharum spontaneum) to remove EtBr from laboratory wastes. The six tropical plants were planted in individual plastic bags containing soil and 10% EtBr-stained agarose gel. The plants were allowed to establish and grow in soil for 30 days. Ethidium bromide content of the test plants and the soil were analyzed before and after soil treatment. Ethidium bromide contents of the plants and soils were analyzed using an UV VIS spectrophotometer. Results Results showed a highly significant (p≤0.001) difference in the ability of the tropical plants to absorb EtBr from soils. Mustard registered the highest absorption of EtBr (1.4±0.12 μg kg−1) followed by tomato and vetivergrass with average uptake of 1.0±0.23 and 0.7±0.17 μg kg−1 EtBr, respectively. Cogongrass, talahib, and carabaograss had the least amount of EtBr absorbed (0.2±0.6 μg kg−1). Ethidium bromide content of soil planted to mustard was reduced by 10.7%. This was followed by tomato with an average reduction of 8.1%. Only 5.6% reduction was obtained from soils planted to vetivergrass. Soils planted to cogongrass, talahib, and carabaograss had the least reduction of 1.52% from its initial EtBr content. Discussion In this study, mustard, tomato, and vetivergrass have shown their ability to absorb EtBr from contaminated soil keeping them from expanding their reach into the environment and preventing further contamination. Its downside, however, is that living creatures including humans, fish, and birds, must be prevented from eating the plants that utilized these substances. Nonetheless, it is still easier to isolate, cut down, and remove plants growing on the surface of the contaminated matrices, than to use strong acids and permanganates to chemically neutralize a dangerous process that can further contaminate the environment and pose additional risks to humans. Though this alternative method does not totally eliminate eventual environmental contamination, it is by far produces extremely insignificant amount of by-products compared with the existing processes and technologies. Conclusions Mustard had the highest potential as phytoremediator of EtBr in soil. However, the absorption capabilities of the other test plants may also be considered in terms of period of maturity and productivity. Recommendations and Perspectives It is recommended that a more detailed and complete investigation of the phytoremediation properties of the different plants tested should be conducted in actual field experiments. Plants should be exposed until they reach maturity to establish their maximum response to the toxicity and mutagenecity of EtBr and their maximum absorbing capabilities. Different plant parts should be analyzed individually to determine the movement and translocation of EtBr from soil to the tissues of plants. Since this study has established that some plants can thrive and dwell in EtBr-treated soil, an increased amount of EtBr application should be explored in future studies. It is suggested therefore that a larger, more comprehensive exploration of phytoremediation application in the management of toxic and hazardous wastes emanating from biotechnology research activities should be considered especially on the use of vetivergrass, a very promising tropical perennial grass. ESS-Submission Editor: Professor Zhihong Xu (zhihong.xu@griffith.edu.au: www.griffith.edu.au/centre/cfhr)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号